Fanless high-end systems – pushing 15 watts to the limit

High-end IoT and embedded systems designed for industrial applications can integrate only a specific selection of new processor technology.

They are only fit for harsh everyday use if they are designed without fans. This increases their reliability in harsh environments where they have to endure shocks or vibrations, and ensures they remain maintenance-free even after years of continuous operation. With no need to regularly exchange air filters and fans, customers benefit from lower operating costs while the incidence of scheduled or unscheduled application downtimes is also reduced.

▲ COM Express computer module conga-TC170

Another plus is that fanless designs can be hermetically sealed. This guarantees the highest degrees of protection against dust and humidity, something that is essential for virtually every industrial application. Last, but not least, no fan also means no noise. This is ideal for devices that are used in close proximity to humans, for example; medical devices in an intensive care unit, in a professional recording studio or a testing and metrology lab.

Fanless systems are relatively easy to implement with processors that consume less than 10 watts. Currently, the limit of where fanless designs are still possible lies around 15 watts TDP. Many embedded and IoT developers work around this limit to get the most out of their fanless high-end applications and achieve new competitive advantages.

In addition, many of these and other systems require the implementation of IoT and industry 4.0 connectivity. Both require additional data processing and communication capabilities - including encryption and virus protection. This can drive up the demand for computing power quite significantly.

The latest processor platform is the 6th generation of Intel® Core™ i7 / i5 / i3 processors.  These come in a very wide range from a few watts up to 91 watts. Let’s take a look at what the 15 watt versions of the SoC class have to offer, because only they allow the development of fully industrial grade, fanless high-end systems.

The new Core generation

Benchmarks for this particular performance class are currently unavailable. However, it is safe to assume that the advancements made in the SoC segment of this processor generation are comparable to those achieved for desktop variants requiring active fans. Intel states that, compared to five year older platforms, the new Core processors provide up to 2.5 times more computing power, 30 times better 3D graphics performance and 3 times longer battery life. Compared to the 5th generation (codenamed Broadwell), there is an estimated increase of around 10% in the graphics and computing performance, and 11% in energy efficiency.

The reasons for this performance increase lie in the shrunk, 14 nm manufacturing process and the completely revised Skylake microarchitecture. This includes an optimized fabric that connects CPU cores, graphics unit and last level cache (formerly L3 cache) via a ring bus architecture. The ULV SoC versions that are relevant for 15 watt designs also include the system agent that integrates the display, storage and I/O controller. The new Intel Speed Shift Technology further ensures faster switching between power states, leading to performance increases between 20% and 45% compared to Intel Core processors of the 5th generation. At the same time, the power consumption is lowered.

For even greater energy efficiency, Intel has reduced the SoC’s supply voltages and refined the power gating of the individual function blocks. This reduces power dissipation and the function blocks can respond more efficiently to individual performance requirements. In addition, it allows extended use of turbo boost, so that applications can cope better with peak loads.

▲ Fanless high-end performance compacted into 95 x 95 mm: conga-TC170 module with passive cooling and carrier board.

Intel Gen9 Graphics

The graphics unit, which has been optimized for Windows 10 and is integrated in the new 9th generation 15 watt SoCs as Intel® graphics 500, now also provides greater performance. It supplies up to three independent 4k displays with 60 Hz refresh rate via DisplayPort 1.2. Also HDMI 1.4 is supported, and DirectX 12 ensures even faster 3D graphics under Windows 10.

Furthermore, an additional video engine is integrated. This allows the encoding and decoding of HEVC, VP8, VP9 and VDENC video with minimal CPU load and low power consumption. For the first time, it is now possible to stream HD video efficiently in both directions, i.e. both upstream and downstream. With 24 execution units and OpenCL 2.0 support, the GT2 520 graphics of the ULV processors can also free the CPU from compute-intensive parallel tasks.

Faster RAM

Another new feature is the support of DDR4 RAM. This brings a number of improvements: First, it provides a much higher bandwidth and works faster; secondly, at 1.2 volts it is also more energy efficient than current 1.35 V DDR3 RAMs. In addition, thanks to a doubling of the memory density it is now possible to achieve 32 GB of working memory with two RAM slots. This is an enormous plus for many high-end embedded systems and probably the main reason for many system designers to upgrade to the new generation as soon as possible.

The 6th generation of Intel Core processors account for the high I/O requirements of many high-end IoT and embedded systems by providing more high-speed I/Os. The SoC versions with PCI Express Gen 3.0 offer almost double data rates. The new processor generation also provides twice as many USB 3.0 interfaces (now 4) than their immediate predecessors. Thanks to the availability of a CSI MIPI-2 camera interface that for the first time integrates an Image Signal Processor (ISP), the images provided by the sensors can be processed in real time and extremely energy efficiently without CPU intervention.

The first three 15 watt embedded SoCs of the 6th generation Intel Core platform are the dual-core processors Intel Core i7-6600U, Intel Core i5-6300U and Intel Core i3-6100U with hyper-threading support.

COM Express Compact

15 watt TDP IoT and embedded designs are ideal for small form factors (SFF). If a customized set of interfaces is required, which is the case in many SFF designs, Computer-on-Modules are the best choice. The PICMG COM Express specification is designed specifically for the high-end segment. In designs where space is limited, the COM Express Compact form factor is used most often. It offers a compact footprint of just 95 x 95 mm and at the same time includes two double row SMD connectors with 440 pins for numerous high-speed interfaces.

In addition, COM Express is optimized for the high performance interfaces of standard PCs and meets the highest rugged demands thanks to the stable connection to the application-specific carrier board. In many cases, it is specifically the fanless high-end designs that rely on COM Express Compact, especially when the standard feature set of Mini-ITX motherboards do not meet the design requirements or space is limited in the application.

이 기사를 공유합니다
저작권자 © 테크월드뉴스 무단전재 및 재배포 금지